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ABSTRACT: The net greenhouse gas benefits of wind
turbines compared to their fossil energy counterparts depend
on location-specific wind climatology and the turbines’
technological characteristics. Assessing the environmental
impact of individual wind parks requires a universal but
location-dependent method. Here, the greenhouse gas pay-
back time for 4161 wind turbine locations in northwestern
Europe was determined as a function of (i) turbine size and
(ii) spatial and temporal variability in wind speed. A high-
resolution wind atlas (hourly wind speed data between 1979
and 2013 on a 2.5 by 2.5 km grid) was combined with a
regression model predicting the wind turbines’ life cycle
greenhouse gas emissions from turbine size. The greenhouse
gas payback time of wind turbines in northwestern Europe varied between 1.8 and 22.5 months, averaging 5.3 months. The
spatiotemporal variability in wind climatology has a particularly large influence on the payback time, while the variability in
turbine size is of lesser importance. Applying lower-resolution wind speed data (daily on a 30 by 30 km grid) approximated the
high-resolution results. These findings imply that forecasting location-specific greenhouse gas payback times of wind turbines
globally is well within reach with the availability of a high-resolution wind climatology in combination with technological
information.

■ INTRODUCTION

Wind energy is becoming increasingly important in the world’s
electricity supply as it becomes cost competitive and the
demand for sustainable energy is rising.1 By the end of 2017,
the cumulative capacity of all wind turbines installed globally
reached over 539 GW, meeting approximately 5% of the
world’s electricity demand.2 It is projected that wind could
contribute 18% to 36% of the world’s electricity production in
2050.3,4

The environmental performance of wind electricity is
typically determined by means of a life cycle assessment
(LCA),5 which is a systematic approach to determine the
environmental impact of a technology considering all the
resources required and related emissions during the different
stages of its life cycle.6 For wind, the environmental impact per
unit of electricity produced depends on the amount and type
of materials used to build and maintain the wind turbine as
well as the electricity produced over its life cycle.7 Because it is
virtually impossible to perform specific LCAs for all individual
wind turbines worldwide, Caduff et al.8 developed a regression
model estimating the life cycle greenhouse gas (GHG)
emission of onshore wind turbines as a function of rotor
diameter and hub height. They found that the bigger the wind

turbine, the lower the GHG emissions per unit of electricity
produced. However, their analysis was focused on onshore
turbines and did not take climatological variations of wind
speed into account.
LCAs of wind turbines are typically based on the mean wind

speed at hub height.7−14 More recently, a comprehensive LCA
study for wind electricity in Denmark built a model to estimate
a wind turbine’s life cycle GHG emissions based on
technological scaling relationships and spatiotemporal in-
formation on wind speed data with approximately a 50 by
50 km grid resolution.15,16 Their study emphasized the
importance of including spatiotemporal variation of wind
speed in the power calculations. The required spatiotemporal
resolution of wind speed data to obtain reliable LCA results
was, however, not analyzed in their study. To our knowledge, a
comparison of the site-specific environmental performance of
wind electricity on larger spatial scales that takes into account
detailed spatiotemporal variability in the local wind resource is
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currently lacking. Moreover, it is not known which
spatiotemporal resolution actually is sufficient to capture the
variability in the wind resource in such an assessment.
Here, the greenhouse gas payback time (GPBT) of 4161

wind turbine locations in northwestern Europe was quantified,
accounting for variability in both wind climatology and turbine
technology. The GPBT is a commonly used metric to identify
the environmental performance of wind energy compared with
a fossil energy benchmark, which equals the time it takes until
the total GHG savings due to the replacement of fossil energy
by wind energy equals the GHG emissions during a turbine’s
life cycle.17

To simulate the yearly average power output of the
individual wind turbines high-resolution wind data for 35
years on a 2.5 by 2.5 km grid18 was combined with technical
information for individual wind turbines.19 The life cycle GHG
emissions for onshore and offshore wind turbines were derived
from the turbine size with an updated regression model based
on the work by Caduff et al.8 The importance of using a high-
resolution wind climatology data set and turbine-specific data
was assessed by analyzing the sensitivity of wind turbine
GPBTs to (i) differences in spatiotemporal detail of wind
speed and (ii) including or excluding differences in turbine
size.

■ MATERIALS AND METHODS

Overview. The influence of time and space dependencies
in wind speed and size variations of wind turbine character-
istics on the environmental impacts was analyzed according to
the steps shown in Figure 1. These steps are further explained
below.
Greenhouse Gas Payback Time. The GPBT depends on

the total emissions during the lifetime of the wind turbine and

its power output, as well as the greenhouse gas emissions of the
fossil energy reference. The GPBT (in months) of a wind
turbine is calculated as

P
GPBT

GHG
GHGturbine

turbine

turbine fossil
=

· (1)

where GHGturbine is the cumulative GHG emission resulting
from the production and installation of the wind turbine (kg
CO2-eq/turbine), Pturbine the lifetime average electricity
production of the wind turbine (kWh/month), and GHGfossil
the GHG emission of the fossil energy benchmark (kg CO2-
eq/kWh). The average emission of natural gas-fired power
plants of 0.5 kg CO2-eq/kWh was chosen as reference for the
whole study area.20

GHG Emissions of Wind Turbine Production. To
calculate the GHG emissions, a regression model was
developed that expresses GHG emissions of a turbine during
its lifetime (GHGturbine) as a function of rotor diameter (D)
and hub height (h). For this, the model from Caduff et al.8 was
modified by expanding the underlying empirical data
set9−12,21−32 and including systematic differences in GHG
emissions between onshore and offshore turbine production.33

A Gaussian generalized linear model was applied using RStudio
(RStudio Team, 2015), based on 28 wind turbine LCA studies
of 22 on- and 6 offshore locations. Cross-validation was
performed using a leave-one-out method.34 The best model
was chosen based on the Akaike information criterion (AIC).

Power Output. The turbine’s power output Pturbine,i at time
i depends on the time-varying wind speed at hub height ui (m/
s) and the rotor diameter through

P A u0.5i iturbine, Betz turbine
3μ μ ρ= · · · · · (2)

Figure 1. Schematic representation of the calculation of the turbine-specific greenhouse gas payback time (GPBT).
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where μ = 0.85 is the overall efficiency (including grid losses
and machine downtime, among others),35 μBetz the theoretical
maximum power that a wind turbine can produce (16

27
, Betz’s

law),36 ρ the air density (1.225 kg/m2), and Aturbine the swept
area (m2) given by 0.25·π·D2. A wind turbine operates in a
limited wind speed range (between cut-in and cut-out wind
speeds), below and above which no electricity is produced.
Above the rated wind speed the turbine is programmed to
operate at its rated power output until it reaches the cut-out
wind speed.
Data. Wind Turbines. Wind turbines in Northwestern

Europe within the domain of 48°N to 60°N and −8°E to
+12°E were included in this study. Their location and technical
specifications were taken from The WindPower database,19

which provides information on the turbines’ hub heights and
rotor diameters. This information is used in the calculation of
the turbines’ life cycle GHG emissions (eq 4) as well as their
power output (eq 2). Data was available for 4161 wind power
locations within the selected domain, of which 80 are offshore
and 4081 are onshore. The included technological turbine
characteristics are given in Figure 2.
Wind Speed. Wind speed data was derived from the KNMI

North Sea Wind Atlas (KNW-Atlas).18 This data set contains
hourly wind speed data on a 2.5 by 2.5 km grid for all years
between 1979 and 2013. The KNW-Atlas is based on ERA-
Interim reanalysis data37 downscaled with the high-resolution,
nonhydrostatic weather forecasting model HARMONIE
CY37h1.1.38,39 It contains wind speeds at heights of 10, 20,
40, 60, 80, 100, 150, and 200 m. The KNW-Atlas has been
validated40,41 and produces accurate wind climatology up to
200 m above sea level. For the wind turbine locations, wind
speed data at the nearest KNW-grid point were used. The wind
speed at hub height was calculated by a linear interpolation of
KNW-levels to the hub height. This wind speed was then used
to calculate the average yearly power output for each wind
turbine location over the full period of 35 years.
Statistical Analysis. Technology versus Climatology. In

the reference situation, the turbines’ GPBTs were calculated
using the high-resolution data from the KNW-Atlas (2.5 by 2.5
km grid, hourly data). To assess the importance of knowing the
location-specific turbine size and wind climatology, this

reference was compared to the turbines’ GPBTs for four
scenarios in which variability characteristics were modified:

1. The importance of spatial variability in the GPBT
calculations was assessed by using a spatial average of
the wind data.

2. The importance of temporal variability was assessed by
using a temporal average of the wind data.

3. The importance of spatial and temporal variability was
assessed using a spatial and temporal average of the
wind data.

4. The importance of technological variation was assessed
using average turbine sizes for on- and offshore
turbines.

Spatial average means that for every hour in the 35-year
study period, the wind data of each grid point were averaged
and used as wind speed value at that hour for every grid point
in the domain prior to calculating the power output for that
hour. Similarly, a temporal average means that all hourly wind
speed values at a certain grid point were averaged and used for
every time slot at that location. Using both the spatial and the
temporal average, only one wind speed value was used for all
turbines for the whole study period, resulting in only the
technological variability of the wind turbines (e.g., hub height,
diameter, and cut-in and cut-out wind speeds) remaining.
Lastly, technological averages were created by using average
onshore and offshore turbine characteristics based on the
turbines in the study area, which are shown in Figure 2.
The Kling−Gupta efficiency (KGE) was used to calculate

the effect of neglecting spatial, temporal, or technological
variability. The KGE is a combination of correlation, bias, and
variability between scenario n (constant wind in space, time, or
both or constant turbine type) and the reference scenario and
is defined as42

rKGE 1 ( 1) ( 1) ( 1)n n n n
2 2 2β γ= − − + − + − (3)

with rn the Pearson correlation coefficient between the GPBT,
γn the variability ratio ((σn/μn)·(μr/σr)), and βn the bias ratio
(μn/μr), with σ the standard deviation and μ the mean of the
GPBT results, of scenario n (see above) compared to the
reference scenario with a 2.5 by 2.5 km grid, hourly wind speed

Figure 2. Box plots show the distribution of important technological wind turbine characteristics for the turbines in the data set. Blue bars are
onshore turbines (n = 4061), and green bars are offshore turbines (n = 80). The plots show the three quartile values of the distribution, the 1.5
interquartile range represented by the whiskers, and the data points outside this range as individual values. The red dots represent the mean used
for average turbine sizes.
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data, and turbine-specific data. The KGE ranges from −∞ to 1
(1 being a perfect fit).
Importance of Spatial and Temporal Resolution. The

importance of using a high spatial and temporal resolution in
the GPBT calculations was investigated as well, because wind
data on large spatial scales are usually available at coarser
resolutions than used in this study.43,44 For this, 25 data sets
were created from the KNW-Atlas data by aggregating
temporal and spatial resolutions to a coarser scale, based on
typical resolutions of regional and global climate archives:45

• temporal resolution: 1 h (default), 3 h, 6 h, 12 h, and 24
h

• spatial resolution: 2.5 by 2.5 km (default), 5 by 5 km, 10
by 10 km, 30 by 30 km, and 80 by 80 km

Reduction of temporal and spatial resolutions was obtained
by subsampling the default data at indicated space and time
intervals. Daily wind speed data were constructed by sampling
data at noon (12:00 UTC). GPBTs of the 4161 wind power
locations were recalculated for the 25 additional data sets, and
the results of each data set were evaluated against the reference
data set using the KGE (see eq 3). All spatiotemporal analyses
were carried out using NCL.46

■ RESULTS
Regression Model. The optimal AIC model fit to describe

turbine life cycle GHG emission as a function of its diameter
(D), hub height (h), and onshore/offshore technology
indicator (T) was

c c D c h c Tlog(GHG ) log( ) log( )turbine 0 1 2 3= + · + · + ·
(4)

where c0 = 2.00[±0.45] is the intercept, c1 = 1.27[±0.50], c2 =
0.84[±0.56], and c3 = 0.29[±0.10]. Figure 3 shows the
regression lines for offshore and onshore wind turbines based
on 28 LCA studies found in the literature.8−12,21−32

Reference Situation. Using the turbine-specific GHG
emissions and wind data from the KNW-Atlas at the highest
spatiotemporal resolution, GPBTs show a pronounced spatial

pattern (Figure 4). The lowest values are located offshore and
close to the coast (1.8 months as lowest GPBT), where wind
speeds tend to be higher. Inland, where lower wind speeds
prevail, the GPBT is typically higher (up to 22.5 months). The
average GPBT for wind turbines in northwestern Europe is
5.25 months.

Ignoring Variability in Wind Speed and Turbine Size.
Spatially averaging wind speed while maintaining the hourly
temporal resolution and the variation in turbine technology
results in a poor match with the reference data (KGE = −0.27)
(Figure 5a). This is due to a 2-fold underestimation of the
GPBT (β = 1.93), while the spread in the GPBT is smaller
than in the reference situation (γ = 0.27). The correlation
between GPBTs of the spatially averaged wind speed and the
reference situation is also relatively low (r = 0.53).
Using a time-averaged wind speed at a 2.5 by 2.5 km spatial

resolution results in an even poorer match with the reference
data with a KGE of −0.53 (Figure 5b). This low KGE value is
mainly due to a large overestimation of the spread in GPBT (γ
= 2.51). Averaging wind speed both spatially and temporally
also gives a negative KGE of −0.26 (Figure 5c). Similar to the
spatially homogeneous wind field, the average GPBT is
strongly overestimated (β = 1.94).
Using an average turbine size for on- and offshore wind

turbines results in a much higher KGE of 0.82 (Figure 5d),
compared to neglecting climatological variability. The
correlation coefficient is relatively high (r = 0.88), and
systematic deviations of the mean and spread are relatively
small (β = 1.12; γ = 1.06).

Spatial and Temporal Resolution. Figure 6 summarizes
the influence of the spatial and temporal resolution on the
KGE performance metric and its components. Figure 6a shows
that decreasing the spatial resolution is the dominant factor for
lowering the KGE, while temporal resolution (hourly vs daily
wind speed estimations) has only a limited influence on the
KGE. The lowest KGE is found for the spatial resolution of 80
by 80 km (KGE = 0.18−0.43). The 30 by 30 km resolution
provides intermediate KGEs (0.65−0.75), while a 10 by 10 km
resolution or higher always results in a KGE greater than 0.89.
The relatively low KGE for the 80 by 80 km resolution is
caused by an overestimation of the spread in GPBT (γ = 1.48−
1.75; Figure 6c) in combination with a decrease in the
correlation coefficient (r = 0.79−0.81; Figure 6d). The γ
coefficient shows two interesting trends: it decreases with a
decrease in temporal resolution, and it increases with a
decrease in spatial resolution. These two trends counteract one
another resulting in a higher KGE for the 80 by 80 km
resolution with the lowest temporal resolution (24 hly).

■ DISCUSSION
Interpretation. The analysis showed that the spatial and

temporal wind information are of particular importance when
assessing the wind turbine greenhouse gas payback time, a fact
that is often neglected in LCAs, while the variation in turbine
size appears to be of relatively lower importance. The analysis
further indicated that daily wind speed data on a 30 by 30 km
grid provide results that still match the reference high-
resolution data (KGE = 0.75), although a spatial resolution
of 10 by 10 km would further improve model performance
(KGE = 0.89).
When time-averaged wind speeds over 35 years were used as

an extreme scenario, GPBTs were severely overestimated.
Wind speed shows a non-normal temporal frequency

Figure 3. GHG emissions of onshore turbines (T = 0, gray line
shading) and offshore turbines (T = 1, purple line shading) as a
function of log(D·h). The shading represents the 95% confidence
interval. The markers are the harmonized LCA results from the
literature (circles are onshore and triangles offshore wind turbines).
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distribution, with lower wind speeds occurring more frequently
than higher values.35 Combined with the nonlinear depend-
ence of the power output on the wind speed, the long-term
average wind speed causes a strong underestimation of the
power output and hence an overestimation of the GPBT.
Using one daily wind speed value measured at noon performed
equally well compared to the use of hourly data. In Europe, the
average wind speed at noon is slightly higher than the daily
mean for vertical levels up to 80 m.47 Because more than 75%
of the wind turbines included here have hub heights lower than
80 m, this leads to slightly higher power yields and
consequently a 10% underestimation of GPBT compared to
using the daily averaged wind data.
Completely neglecting spatial variability in the wind speed

led to large over- and underestimations of GPBT of individual
wind turbines. Although offshore wind turbines require more
building materials (and hence have higher GHG emissions)
than onshore installations, offshore GPBT are typically lower
because of the higher wind speeds over sea. The results reflect,
however, only a relatively small sample of only 80 offshore
wind turbine locations; more offshore locations should be
included to consolidate this conclusion.
Uncertainties. This study showed that it is highly relevant

to account for spatiotemporal and technological variation when
calculating the GPBT of wind electricity. A number of
uncertainties may, however, influence the results, which are
further discussed below.
First, wind farms were treated as a single geographical

location, while in reality wind farms may occupy large surface
areas. The largest farm in the data set (175 turbines with a
diameter of 107 m) covers an area of approximately 56 km2,
thus covering multiple grid cells in the KNW-Atlas, which
could each have a distinct wind climatology. However, less
than 2% of the wind turbine locations in the data set span
more than one grid cell and less than 0.6% more than two grid
cells. Additionally, large wind farms are predominantly located
offshore, where wind climatology is more stable because of low
surface roughness.35 Therefore, the effect of ignoring the

spatial extent of wind farms is considered limited in the context
of this study.
The power performance of wind turbines can also be

influenced by wake effects. In a wind farm, downstream
turbines are affected by a decrease in wind speed due to
momentum loss caused by upstream turbines.48 Several
studies35,49 report that power output in wind farms are
typically 5 to 10% lower because of these wake effects, but
losses could be as high as 50% in large farms with narrow
turbine spacing.50 Here, more than 75% of the locations
consisted of fewer than 4 turbines and only 0.1% of the
locations had array sizes exceeding 10 × 10 turbines. Wake
effects therefore are unlikely to influence the GPBT
calculations. Still, wake effects may become important for
other locations in the world and as more large wind farms are
built in the future.
Another source of uncertainty is that a resolution of 2.5 km

is most likely not sufficient to capture the local properties of
wind speed at the top of mountain ranges. The energy yield of
a wind turbine at mountain tops is therefore most likely
underestimated in this analysis. However, with increasing
height the air density decreases, which also influences power
performance. A recent study by Jung and Schindler51 showed
that at a height of 800 m, the highest elevation with wind
turbines in the study area, annual energy yields are over-
estimated by 6% when changes in air density are not
considered. The same error in GPBTs is achieved when taking
one daily wind speed measure instead of hourly data or
changing from a 2.5 by 2.5 km to a 5 by 5km grid. While the
uncertainty from this simplification is not negligible, the 6%
error in GPBT from neglecting air density changes is relatively
small compared to the error introduced by using average wind
speeds, as shown in the analysis. In areas with even higher
elevations, spatiotemporal variance in air density should be
accounted for because errors in energy yield can otherwise
amount to up to 25%.
Incorporating more turbine-specific losses can further

improve the GPBT calculations. Examples are performance
decline due to aging, which has been reported to lie around

Figure 4. Greenhouse gas payback time (in months) for the reference situation (wind data at 2.5 by 2.5 km and hourly resolution and turbine-
specific size characteristics).46
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0.6% per year,52 and losses due to rotor blade soiling and/or
icing, which are generally assumed to account for 2%, but can
in rare cases exceed 20%.53

Finally, a gas-fired power plant was chosen as the
background energy system to focus the investigation on the
effect of changes in wind climatology and turbine technology.
More advanced reference systems that more precisely reflect
what is replaced by the produced wind electricity can also be
considered, but that would require a substantial amount of
extra information about the electricity system as a whole.54

Another possibility to evaluate the environmental trade offs of
wind electricity is to integrate the location-specific long-term
power output and material requirements for wind turbines into
integrated assessment models.55

Outlook. The method presented here can be used to derive
the environmental performance of current and future
individual wind turbines worldwide even when limited
information on turbine technology is available. Following the

developments in the wind energy market to build larger wind
farms, wake effects should be included in the future, and when
areas with higher elevation are considered, the spatiotemporal
variability in air density has to be considered.
Recent studies specifically focused on the energy production

potential of wind turbines but did not consider environmental
impacts such as GPBT43,56,57 or use wind climatology that is
either not globally available or at coarser resolutions. This
study indicates that the use of current spatial resolution for
global climate data archives (e.g., ERA-Interim37) of 80 by 80
km introduces a relatively large uncertainty in the power
predictions (KGE = 0.18−0.43). A new ERA-suite, ERA5,58 is
under development with global climatological data at an hourly
and 30 by 30 km resolution at which the KGE exceeds 0.7.
Therefore, using this method with the new ERA-suite would

provide a good opportunity for location-specific predictions of
the environmental impacts for wind turbines at the global scale.
The method may also be used to identify optimal locations for

Figure 5. Comparison of greenhouse gas payback times (GPBT) for the reference scenario vs the scenarios with spatially averaged wind speed (a),
time-averaged wind speed (b), wind speed averaged over space and time (c), and average turbine size for onshore and offshore farms (d). Offshore
wind locations are represented by the blue dots, and onshore wind locations are represented by the black crosses. KGE is the Kling−Gupta
efficiency, r the Pearson correlation coefficient, γ the variability ratio, and β the bias ratio.46
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wind turbines taking into account environmental impacts. The
results could be incorporated as an extra factor in wind energy
potential studies for various regions worldwide. In addition to
the GPBT, this method can also be used to calculate payback
times for other environmental impacts, such as water and
mineral resource scarcity,59,60 giving a more complete picture
of wind turbines’ environmental performances.
This study showed that the GPBT of wind turbines in

northwestern Europe varies between 1.8 and 22.5 months.
Detailed spatiotemporal (at least daily wind speed on a 30 by
30 km grid) wind climatology as well as hub height and rotor
diameter of the wind turbines are required to assess the
greenhouse gas payback times of wind electricity with sufficient
accuracy. The findings imply that a location-specific assess-
ment of wind turbines’ GPBTs at the global scale is well within
reach with the availability of high-resolution reanalysis data
sets and wind turbine databases.
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